Refine Your Search

Search Results

Technical Paper

Vehicle Design for Passenger Protection from High-Speed Rear-End Collisions

1968-02-01
680774
Scientific methodology and engineering techniques were applied to a series of three automobile rear-end collision experiments to provide data relating to seat, seat backrest, and head-restraint design. Five seat back heights and four seat back strength values were studied in connection with their practicality and relative protective features, when subjected to a 55 mph rear-end collision exposure. These research data provide a basic reference system of high-speed collision performance for seat designs with respect to occupant size and proximity to injury producing structures. Additionally, methodology, instrumentation, and related equipment required for post-crash fire studies were included in experiment 106, providing what is believed to be the first published data on the precise time-related events associated with collision-induced passenger car fires. Design revisions suggested by these findings are discussed.
Technical Paper

Hot Tensile Properties of Shielded Metal Arc Welded Similar and Dissimilar Joint of 9Cr-1Mo Steel and 304 Stainless Steel

2024-01-15
2024-01-5000
The recent demand for power generation capability has raised the operating temperature of the power plants in the range of 600°C. High operating temperature leads to material degradation or reduced lifespan of boilers, which necessitates the analysis of the high-temperature behavior of welded joints of power plant boilers for a long lifespan and improved efficiency. Gr91 martensitic and SS304 austenitic stainless steel are identified as the primary piping material for these boilers. The boiler piping involves similar weld joints (Gr91/Gr91 and SS304/SS304) and dissimilar weld joints (SS304/Gr91) known as transition joints. These joints are exposed to high temperatures for a long duration during their service and it is therefore necessary to evaluate the high-temperature behavior of these weld joints. The hot tensile test is a short-term high-temperature test that serves as a valuable tool for analyzing the high-temperature behavior of the welds.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

Active Damping Control and Architecture within a Hybrid Supervisor Control Structure

2024-04-09
2024-01-2144
This paper focuses on an inherent problems of active damping control prevalent in contemporary hybrid torque controls. Oftentimes, a supervisory torque controller utilizes simplified system models with minimal system states representation within the optimization problem, often not accounting for nonlinearities and stiffness. This is motivated by enabling the generation of the optimum torque commands with minimum computational burden. When inherent lash and stiffness of the driveline are not considered, the resulting command can lead to vibrations and oscillations in the powertrain, reducing performance and comfort. The paper proposes a Linear Quadratic Integral (LQI)-based compensator to be integrated downstream the torque supervisory algorithm, which role is to shape transient electric machine torques, compensating for the stiffness and backlash present in the vehicle while delivering the driver-requested wheel torque.
Technical Paper

Typical Acceleration and Speed Profiles for Right-Turn Maneuvers Based on SHRP2 Naturalistic Driving Data

2024-04-09
2024-01-2472
The goal of this study was to use naturalistic driving data to characterize the motion of vehicles making right turns at signalized intersections. Right-turn maneuvers from 13 intersections were extracted from the Second Strategic Highway Research Program (SHRP2) database and categorized based on whether or not the vehicle came to a stop prior to making its turn. Out of the vehicles that did stop, those that were the first and second in line at the intersection were isolated. This resulted in 186 stopped first-in-line turns, 91 stopped second-in-line turns, and 353 no stop turns. Independent variables regarding the maneuver, including driver’s sex and age, vehicle type, speed, and longitudinal and lateral acceleration were extracted. The on-board video was reviewed to categorize the road as dry/wet and if it was day/night. Aerial photographs of the intersections were obtained, and the inner radius of the curve was measured using the curb as a reference.
Technical Paper

Analysis of Accidents Involving Alleged Road Surface Defects (i.e., Shoulder Drop-offs, Loose Gravel, Bumps and Potholes)

1996-02-01
960654
A considerable amount of research has been conducted to evaluate the effects of road surface discontinuities and disturbances on vehicle dynamics and accident causation. This paper addresses the real world effects of these conditions by reviewing the analyses of actual physical evidence of accidents involving alleged road defects. Analysis and testing techniques are described and alternative causative elements are presented.
Technical Paper

Development of High Capacity Lithium- Ion Battery for NISSAN LEAF

2012-04-16
2012-01-0664
Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. In order to achieve an improved driving range, power performance and dynamic performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and passive-cooled laminated Li-ion battery. Especially Nissan has been emphasizing electric powered technology with a focus on advanced lithium ion battery from 1992. This presentation will introduce the features of Nissan LEAF and its battery technologies.
Technical Paper

Failure Analysis of Some Toyota Prius Battery Packs and Potential for Recovery

2013-10-14
2013-01-2561
The Toyota Prius battery pack consists of 38 individual battery modules, each module contains 6 NiMH cells in series. This means that each pack contains 228 NiMH cells. Each cell has the potential to fail. This report investigates the mode of failure of Prius battery packs by first analysing a number of packs in the lab, and then road testing them in a Toyota Prius. The analysis of the battery packs show that some packs had aged “linearly”, that is in a balanced manner, such that the state of health of all modules remained similar. However, in other packs discrete modules had significantly different states of health. A pack that consists of cells that are matched in both state of health and state of charge delivers the best performance. The research also showed that the worst cell in the pack determines the overall pack performance. This was demonstrated by substituting reduced capacity or short-circuited modules into a functioning battery pack.
Technical Paper

Development of a High Fidelity CAE Model for Predicting Brake System Temperatures

2017-03-28
2017-01-0145
In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
Journal Article

An Analysis of Sport Bike Motorcycle Dynamics during Front Wheel Over-Braking

2019-04-02
2019-01-0426
There is extensive literature on motorcycle skid/brake to stop testing on a host of motorcycle types, rider experience, brake system configurations and the associated deceleration rates. Very little information exists on deceleration rates involved with over-braking the front wheel. The subject of this paper addresses the deceleration rates of sport bike type motorcycles during over-braking of the front wheel. Based on the physics of a two-wheeled vehicle like the motorcycle, once the front wheel is over-braked and becomes locked, the rider has very little time to recover from the skid and often times falls. Another over-braking scenario, especially on sport bike type motorcycles, is the possibility of the rear wheel lifting and pitching over the front wheel. During the initial phase of braking, weight transfer to the front wheel occurs creating a greater level of traction.
Technical Paper

Vehicle Rear Impacts and Spinal Disc Herniations in Occupants: Is there a Basis for Causation?

2017-03-28
2017-01-1458
Disc herniations in the spine are commonly associated with degenerative changes, and the prevalence increases with increasing age. With increasing number of older people on U.S. roads, we can expect an increase in clinical findings of disc herniations in occupants involved in rear impacts. Whether these findings suggest a causal relationship is the subject of this study. We examined the reported occurrence of all spine injuries in the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database from 1993 to 2014. There were over 4,000 occupants that fit the inclusion criteria. The findings in this study showed that, in the weighted data of 2.9 million occupants, the most common spine injury is an acute muscle strain of the neck, followed by strain of the low back. The delta-V of a rear impact is a reliable indicator of the rate of acute cervical strain in occupants exposed to such impacts.
Journal Article

Driving Safety Performance Assessment Metrics for ADS-Equipped Vehicles

2020-04-14
2020-01-1206
The driving safety performance of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using metrics in order to be able to assess the driving safety performance and compare it to that of human-driven vehicles. In this research, driving safety performance metrics and methods for the measurement and analysis of said metrics are defined and/or developed. A comprehensive literature review of metrics that have been proposed for measuring the driving safety performance of both human-driven vehicles and AVs was conducted. A list of proposed metrics, including novel contributions to the literature, that collectively, quantitatively describe the driving safety performance of an AV was then compiled, including proximal surrogate indicators, driving behaviors, and rules-of-the-road violations.
Technical Paper

Comprehensive Thermal Modeling and Analysis of a 2019 Nissan Leaf Plus for Enhanced Battery Electric Vehicle Performance

2024-04-09
2024-01-2403
With the increasing demand for Battery Electric Vehicles (BEVs) capable of extended mileage, optimizing their efficiency has become paramount for manufacturers. However, the challenge lies in balancing the need for climate control within the cabin and precise thermal regulation of the battery, which can significantly reduce a vehicle's driving range, often leading to energy consumption exceeding 50% under severe weather conditions. To address these critical concerns, this study embarks on a comprehensive exploration of the impact of weather conditions on energy consumption and range for the 2019 Nissan Leaf Plus. The primary objective of this research is to enhance the understanding of thermal management for BEVs by introducing a sophisticated thermal management system model, along with detailed thermal models for both the battery and the cabin.
Technical Paper

Overview of Cloud Microphysical Measurements during the SENS4ICE Airborne Test Campaigns: Contrasting Icing Frequencies from Climatological Data to First Results from Airborne Observations

2023-06-15
2023-01-1491
The European Union’s Horizon 2020 programme has funded the SENS4ICE (Sensors for Certifiable Hybrid Architectures for Safer Aviation in Icing Environment) project [1], an innovative approach for the development and testing of new sensors for the detection of supercooled large droplets (SLD). SLD may impinge behind the protected surfaces of aircraft and therefore represents a threat to aviation safety. The newly developed sensors will be tested in combination with an indirect detection method on two aircraft, in two parallel flight programs: One on the Embraer Phenom 300 in the U.S. and one on the ATR-42 in Europe. In this framework the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) is in charge of the airborne measurements and data evaluation of the microphysical properties of clouds encountered during the SENS4ICE field campaigns in February, March and April 2023.
Technical Paper

Comprehensive assessment of gasoline spray robustness for different plume arrangements

2024-04-09
2024-01-2620
Optimizing fuel injection spray is essential to comply with stringent future emission regulations for hybrid vehicles and internal combustion engine vehicles, and the spray characteristics and geometry must be robust for various engine operating conditions. This study presents experimental and numerical assessments of spray for lateral-mounted gasoline direct injection (GDI) sprays with different plume arrangements to analyze collapse characteristics, which can significantly deteriorate the geometry and characteristics of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using LED-based diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. High-fidelity computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization.
Technical Paper

Development of a New Gas Turbine Super Alloy GMR-235

1955-01-01
550288
DESCRIBED here is a new nickel-base alloy offering a combination of high-temperature strength, adequate ductility, and low strategic alloy content. Used in gas-turbine buckets where extremely high temperatures are encountered, GMR-235 has undergone a program of laboratory testing, development of foundry production and control methods, and extensive field testing with no failures.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
Technical Paper

Tractor Semitrailer Left Turns and Lane Changes

2010-04-12
2010-01-0049
Data regarding the characteristics of left turns and lane changes performed by articulated tractor semitrailer combination vehicles in urban environments are presented. Previous studies have quantified acceleration rates for tractor semitrailers travelling straight, and for automobiles making left turns, but there is a gap in the literature regarding heavy vehicle acceleration during left turns. Likewise there is a lack of published data regarding the duration of lane changes made by these vehicles at highway speeds. Left turns were studied at a four-way stop-sign controlled intersection with a high volume of heavy vehicle traffic. Markings were made on the roadway corresponding to three left turn paths of varying radii. Intervals leading up to and along the marked paths were measured and painted on the roadway. The motion of each tractor semitrailer that made the subject left turn was recorded by video.
X